



- ➤ Hot Water or Steam Fired Single Effect
- ➤ Warm Water Fired Single Effect
- ➤ Warm Water or Solar Fired Single Effect Villa Model
- ➤ Direct Fired Double Effect
- > Steam or Hot Water Fired Double Effect



#### Advantages of Absorption Chillers

The cooling process by a chiller in modern air conditioning systems making comfort conditions with clean and fresh air for people who live in crowded and polluted cities and also for most of industrial applications plays very important role. In this regards the LiBr+H2O absorption chillers with coefficient of performance (COP) greater than 0.7 because of following characteristics and many other reasons are more advisable than compression chillers.

| a | Ozone | Frien | dly |
|---|-------|-------|-----|

#### b) Non Toxic

#### **Absorption**

c) Non Explosive

#### Chillers in

d) Stable Cycle Working Fluid

e) Minimal Electrical Power Consumption

#### Comparison

f) Minimal Total Energy Consumption

#### With

g) Ability to Function with Waste Energy

h) Vibration and Noise Free

#### Compression

j) Extremely Longer Operating Time

i) Minimal Moving Components

#### Chillers

k) Wide Product Range and Model Selection for Cooling Capacity

1) Lower Initial Price and Operating Costs Especially from Medium to Super Models,

m) Simpler Installation, Operation and Maintenance, etc....

Absorption cooling cycle technology recognized as the first refrigeration cycle has been applied widely to space conditioning and process cooling since 1886 i.e. for more than 120 years ago. Absorption chillers are thermally flexible activated systems utilizing steam, hot and warm water, solar energy, clean liquid and gaseous fuels or exhausted gases to power the absorption cycle.

Absorption Chillers VIUNA HVAC IND.

## You Have The Best Option With an Unmatched Reliability

# Absorption Chiller



#### WHY VIUNA HVAC IND.?

The Viuna HVAC Ind. offers the widest absorption chiller size and model selection available in the HVAC industry. Eighty sizes range from 30~1750 US refrigeration (USR) tons in single effect and double effect absorption chillers:

- a) Twenty sizes range in single effect hot water or steam fired from 100~1750 USR tons,
- **b)** Twenty sizes range in single effect warm water fired from 30~500 USR tons,
- c) Twenty sizes range in double effect direct gas fired from 75~1500 USR tons,
- d) Twenty sizes range in double effect hot water or steam fired from 75~1500 USR tons.

Base of designing for the above mentioned absorption

chillers in Viuna factory is performed by computer software which has been developed by Viuna since 1995. Viuna, from its conception has been seriously devoted to increasing its research and development capability with regards to the mentioned product range, sizes and features of its absorption chillers.

The current product line is the results of its relentless efforts in research and development.

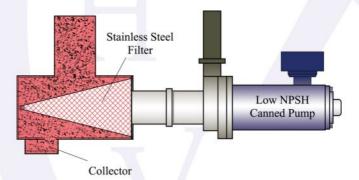
Viuna has utilized innovative measures in its production line as follows:

 Upward holes spraying twin copper tubes technology, inside the absorber, evaporator, and generators, stops the perpetual concern with respect to the cooling capacity decrease generated thru clogging.



Viuna Double Effect Direct Fired Absorption Chiller

- Automatic de crystallization technology even in sudden shout down circumstances due to electrical failure.
- 3) Automatic purge hook type system.
- 4) Special anticorrosion coating on inner surfaces.
- 5) PLC based control panel.
- 6) Special and most recent enhancing techniques applied to all components.

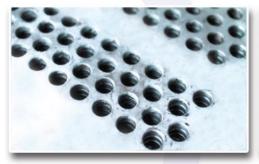

The above mentioned items are very important patents that are the crucial opening key to the world's LiBr+H2O absorption chiller industry which had been under the shadow up to recent years.

#### General Design Features

The design features, construction and operational manuals for absorption chillers covering all various different units in operation require many pages of manuals to describe the situation at hand which is well out of the scope of this brochure. Therefore, this brochure is intended to provide the required engineering data and information for understanding what makes the Viuna absorption chillers product range including the following general design features:

- 1) Design by computer software
- 2) Single shell design for single effect cycles and double shell design for double effect cycles

 Solution and refrigerant low NPSH canned motor pumps with filters




#### Canned Pump With Filter

- 4) Complete turnkey package including factory asembled and wired. For transportation, the control panel may be shipped separately and installed at site. In case of larger sizes, the unit can be broken into smaler pieces and shipped in multiple units of two or three pieces for shipment.
- 5) Upward holes spraying twin copper tubes technology, inside the absorber, evaporator, and generators, stops the perpetual concern with respect to the cooling capacity decrease generated thru clogging.
- 6) Automatic de crystallization technology even insudden shout down circumstances due to electrical failure.

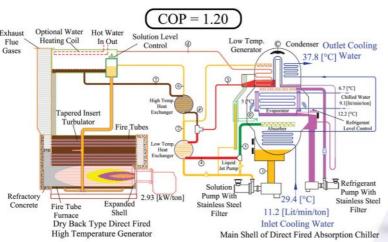
- 7) Automatic purging hook type system which continuously and automatically removes non condensable gases from the shell side and stores them in a tank. The purging system vacuum pump is provided as a standard feature.
- 8) Special anticorrosion coating on inner surfaces.
- 9) PLC based control panel with HMI display plus user friendly interface and data logging system.
- 10) Special and most recent enhancing techniques applied to all components.

- **18)** The units are supplied with one in single effect and two or three in double effect regenerative heat exchangers in order to increase the performance of the cycle
- 19) The heat exchangers are of shell and tube type with circular shell geometry according to TEMA standards and constructed with internally enhanced copper nickel tubes
- 20) All headers are of Carbon steel (evaporator, absorber, condenser and generators), with water connections on the side, for an easy access to the tube bundles








Inner Grooved Tube Sheet With Anti Corrosion Coating

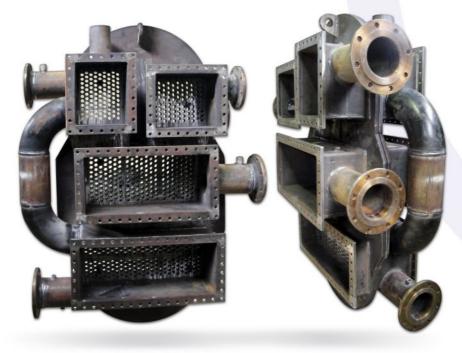
High Temperature Generator
Firetube

Upward Type Spray Tubes for Absorber/Evaporator/Generator

- 11) The chiller is provided with an auto-de crystallization line (overflow J shaped pipe) with PT100 temperature sensor, protecting itself from crystallization during operation
- **12)** Stainless steel eliminator plates between evaporators to absorbers and generators to condensers
- 13) Sprayed twin tubes type generators for increasing the performance of the machine in order to reduce the size of generators and volume of the solution
- 14) Straight tubes in the generators for easy maintenance
- **15)** Fixed and floating generator supports utilized to control tubes bundle expansion
- **16)** Carbon steel tube sheets with inner grooved holes according to TEMA standards
- 17) All tubes fitted within the tube sheets duly expanded for a tight fit in along with a sealant adhesive resistant to temperature and pressure increases where all tubes are individually accessible and replaceable from either end of the chiller

- **21)** The absorber to the condenser crossover piping is a standard feature for it reduces the piping work which also results in the overall reduction in the length of the unit, welding, and fabrication processes at the site
- 22) Condenser bypass connection for necessary circumstances in reducing cooling water line pressure drop has been adapted as part of the system
- 23) Sight glasses are provided on the evaporator, the absorber and the generator as these glasses facilitate the monitoring of the refrigerant and the solution levels for easing inspection and maintenance operations.
- 24) Refrigerant storage box for dilution of the cycle
- **25)** All the various sections of the chiller are interconnected by suitably sized seamless carbon steel piping
- **26)** Sampling refrigerant and solution valves provided as standard feature
- **27)** Balancing refrigerant and solution valves provided as standard feature
- **28)** Optional isolation butterfly valves for refrigerant and solution pumps






#### Viuna Double Effect Direct Fired Absorption Chiller / Heater

- 29) LiBr solution, refrigerant, corrosion inhibitor (Lithium Molybdate) and octyl alcohol provided separately and to be charged at site
- **30)** Nitrogen is charged at a pressure slightly greater than atmospheric pressure for shipping, in order to avoid air entering the machine in case of any accidents during transport
- 31) Lifting lugs provided on each side of the unit.



Cycle Components Internally and Externally enhanced Tubes







High Stage Generator Fire Tube Turbulator

Absorption Chillers VIUNA HVAC IND.

#### CONTROLS & SAFETY FEATURES

- PLC based control for operational logic and sequence, safety and capacity control through advanced algorithm, with touch screen HMI to input set points, and indication of the unit trip causes, sensor errors, pumps errors, and faults history
- 2) Elimination of rigid electro mechanical control components
- 3) Advanced algorithm capable of achieving part load operation from 5 to 100% step less based on leaving chilled water and entering cooling water temperatures by modulation of the hot water or steam three way or two way valve in single effect and double effect absorption model and modulation of the solution pump by invertor controls allows optimum flow of the solution to the high temperature generator
- 8) Level magnetic switch in three positions for solution level monitoring in the high stage generator, (Available only in the double effect absorption chiller type units.)
- 9) Flow switches for chilled water, cooling water, & hot water flow lines
- 10) Antifreeze protection safety
- 11) Crystallization prevention safeties including; overflow pipe for auto de crystallization, low cooling water inlet temperature cut-out, high temperature control for high temperature generator
- 12) PLC Controlled double action (leaving chilled water/entering cooling water) temperature feedback adjustment for hot water or steam valve included as standard item
- 13) Burner flame protection in double effect direct gas fired absorption chiller



- 4) Interlocks for chilled water, cooling water & hot water pumps, cooling tower fans, with individual manual start and stop switch on HMI
- 5) Temperature sensors and display for leaving chilled water, entering cooling water, evaporator pan, and generator solution over flow J shape tube
- 6) Vacuum pressure control thru pressure transmitter sensor
- 7) Level magnetic switch in three positions for refrigerant level monitoring in the evaporator tank

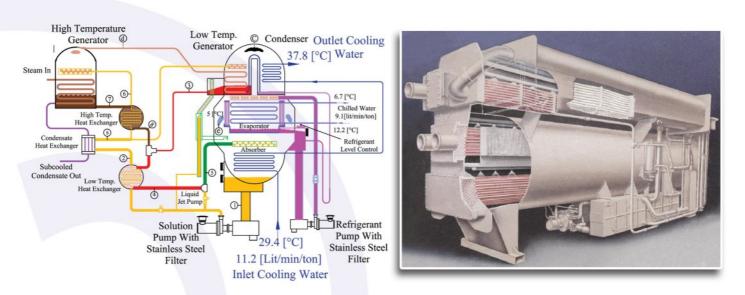
- 14) Stack flue gases temperature monitoring protection capability
- 15) Main circuit breaker for safety against electrical short circuit hazards
- 16) Individual motor circuit breakers and contactors for solution, refrigerant, and purge pumps
- 17) Isolation control transformer protection for control circuitry

- 18) Terminal blocks for the control of chilled water, cooling water, and hot water pumps, and cooling tower fans
- 19) Machine condition status indication on the display
- 20) Display of all data and logged alarms on HMI
- 21) Weekly unit operation time schedule setup

#### Optional Items

- 22) Modem connectivity for immediate customer service call response
- 23) Connection to the building client management system
- 24) Last 24 hours logging at a sampling time rate of one hour intervals including most recent six alarms logging facility for providing better understanding on the behavior of the unit during alarm conditions providing easy diagnostics

#### TESTING PROCEDURE


The LiBr type absorption chiller units working pressure is under vacuum conditions, so producing of these units is very important with respect to leak tightness. Hence it is necessary to perform the leak detection tests as follows.

- 1) Tubes and shell sides Nitrogen test with pressure up to 3~5 [barg]
- 2) Helium test (sniffing method)
- 3) Tubes side hydraulic test with pressure up to 10 [barg] or 1.5 times of working pressure



Absorption Chillers

VIUNA HVAC IND.



Typical Steam / Hot Water Fired Double Effect Absorption Chiller



Typical Solar Collector to produce Warm Water for Viuna Vila Model Absorption Chiller

#### Viuna Single Effect Hot Water and Steam Fired Absorption Chillers Performance Data [EN]

|                |                                                                                                                                                                                                                                                                                                    |      | COP = 0.730                  |     |       | _         | Medi       |           |            |           |            | _          | е Мо           |                |            |                |                | vy Mo       | _          | _                 |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------|-----|-------|-----------|------------|-----------|------------|-----------|------------|------------|----------------|----------------|------------|----------------|----------------|-------------|------------|-------------------|
| Ŀ              |                                                                                                                                                                                                                                                                                                    |      |                              |     | (Cm)  | =         |            |           |            |           | 0.0        |            |                |                | 4.60       | 400            |                | _           |            | 220               |
| ╙              |                                                                                                                                                                                                                                                                                                    |      | No. VSEH<br>g Capacity[U     |     |       | 35<br>100 | 45<br>125  | 55<br>150 | 60<br>175  | 70<br>200 | 90<br>250  | 300        | <b>125</b> 350 | <b>140 400</b> | 160<br>450 | <b>180</b> 500 | <b>220</b> 600 | 700         | 280<br>800 | <b>320</b><br>900 |
| Ţ              | _                                                                                                                                                                                                                                                                                                  |      | Flow Rate                    |     | GPM   | 240       | 300        | 360       | 420        | 480       | 600        | 720        | 840            | 960            | 1080       | 1200           | 1440           | 1680        | 1920       | 2160              |
| Chilled        | Water                                                                                                                                                                                                                                                                                              | Data | Pressure Drop                |     | psi   | 6         | 7          | 11        | 13         | 11        | 14         | 13         | 15             | 7              | 9          | 8              | 12             | 11          | 10         | 14                |
| C              | >                                                                                                                                                                                                                                                                                                  | _    | In/out Diameter              | E   | Inch  | 4         | 4          | 5         | 5          | 5         | 6          | 6          | 8              | 8              | 8          | 8              | 8              | 10          | 10         | 10                |
| pi             |                                                                                                                                                                                                                                                                                                    | N    | Flow Rate                    |     | GPM   | 317       | 396        | 476       | 555        | 634       | 793        | 951        | 1110           | 1268           | 1427       | 1585           | 1902           | 2219        | 2536       | 2853              |
| Cooling        | Water                                                                                                                                                                                                                                                                                              | Data | Pressure Drop                |     | psi   | 6         | 7          | 9         | 12         | 9         | 13         | 13         | 13             | 8              | 10         | 7              | 11             | 11          | 10         | 12                |
| ဒ              | >                                                                                                                                                                                                                                                                                                  | 1    | In/out Diameter              | Α   | Inch  | 4         | 4          | 5         | 5          | 5         | 6          | 6          | 8              | 8              | 8          | 10             | 10             | 10          | 12         | 12                |
|                |                                                                                                                                                                                                                                                                                                    |      |                              |     |       |           | Н          | ot Wa     | iter I     | ired      | Gen        | erato      | r Da           | ta             |            |                |                |             |            |                   |
|                | ter                                                                                                                                                                                                                                                                                                |      | Flow Rate                    |     | GPM   | 189       | 236        | 284       | 331        | 378       | 473        | 568        | 663            | 757            | 852        | 946            | 1135           | 1324        | 1513       | 1702              |
|                | Flow Rate GPM  Pressure Drop psi  In/out Diameter G Inch                                                                                                                                                                                                                                           |      |                              |     |       | 3         | 3          | 4         | 5          | 5         | 5          | 6          | 7              | 7              | 9          | 7              | 11             | 11          | 11         | 15                |
| Ŀ              | In/out Diameter G Inch                                                                                                                                                                                                                                                                             |      |                              |     |       | 3         | 3          | 4         | 4          | 4         | 5          | 5          | 6              | 6              | 6          | 8              | 8              | 8           | 10         | 10                |
|                |                                                                                                                                                                                                                                                                                                    |      |                              |     |       |           |            | Stear     | n Fir      | ed G      | ener       | ator l     | Data           |                |            |                |                |             |            |                   |
| 5              | I a                                                                                                                                                                                                                                                                                                | Flo  | w Rate                       |     | Lb/hr | 1683      | 2104       | 2525      | 2945       | 3366      | 4208       | 5049       | 5891           | 6732           | 7574       | 8415           | 10098          | 11781       | 13464      | 15147             |
| Cton Data      | <u> </u>                                                                                                                                                                                                                                                                                           | Pre  | essure Drop                  |     | psi   | 0.3       | 0.3        | 0.3       | 0.4        | 0.5       | 0.5        | 0.5        | 0.6            | 0.7            | 0.9        | 0.8            | 1              | 1           | 1.3        | 1.8               |
|                | [ ca                                                                                                                                                                                                                                                                                               | Inle | et Diameter                  | Gi  | Inch  | 4         | 4          | 4         | 5          | 5         | 5          | 6          | 6              | 6              | 8          | 8              | 8              | 10          | 10         | 10                |
| ٥              | 16                                                                                                                                                                                                                                                                                                 | Ou   | tlet Diameter                | Go  | Inch  | 1 1/4     | 1 1/4      | 1 ½       | 1 ½        | 1 ½       | 2          | 2          | 2              | 2              | 2 ½        | 2 ½            | 2 ½            | 2 ½         | 3          | 3                 |
| Ele            | ect                                                                                                                                                                                                                                                                                                | ric  | al Consumptio                | on  | kW    | 2         | 2.5        | 2.5       | 3          | 3         | 3          | 4          | 4              | 5.5            | 5.5        | 6.5            | 6.5            | 7.5         | 7.5        | 9                 |
|                | 2                                                                                                                                                                                                                                                                                                  | Ler  | ngth                         | L   | m     | 3.3       | 3.3        | 3.6       | 3.8        | 3.6       | 3.8        | 4          | 4.2            | 4.8            | 5.3        | 4.9            | 5.4            | 5.5         | 5.6        | 6                 |
| ٤              | וחם                                                                                                                                                                                                                                                                                                |      | ight                         | Н   | m     | 2         | 2          | 2         | 2.2        | 2.2       | 2.4        | 2.4        | 2.6            | 2.6            | 2.6        | 2.8            | 2.8            | 2.9         | 3          | 3                 |
| Dimension Date | 1018                                                                                                                                                                                                                                                                                               | Wi   |                              | W   | m     | 1.4       | 1.4        | 1.4       | 1.6        | 1.6       | 1.5        | 1.5        | 1.6            | 1.6            | 1.6        | 1.8            | 1.8            | 1.8         | 1.9        | 1.9               |
|                | נ                                                                                                                                                                                                                                                                                                  |      | be Removal<br>it Ship Weight | R   | m     | 2.7       | 2.7<br>3.4 | 3         | 3.3<br>4.5 | 3<br>4.9  | 3.3<br>5.4 | 3.3<br>5.9 | 3.5<br>6.4     | 7.5            | 4.4<br>8.7 | 9.7            | 4.4            | 4.4<br>12.7 | 4.4<br>14  | 4.8<br>15.7       |
| 2              | 5                                                                                                                                                                                                                                                                                                  |      | it Operating Wei             | ght | t     | 3.9       | 4.5        | 5.4       | 5.8        | 6.3       | 7          | 7.9        | 8.6            | 9.7            | 11         | 12.3           | 13.8           | 15          | 16.6       | 17.8              |
| ╠              | _                                                                                                                                                                                                                                                                                                  |      | Viuna Sing                   |     | 1000  |           | 2.33.000   |           |            |           |            |            | 80800877       | 22.50.00       |            |                | 1.0.0000       |             |            |                   |
|                |                                                                                                                                                                                                                                                                                                    |      | A -                          | gie | L     | л по      | t wai      | ler ai    |            | W .       | rnet<br>I  | I ADS      | •              |                | mne        | ווע 15         |                | ion [s      | νij        |                   |
|                | Remarks  A: Absorber Cooling Water Inlet Connection  B: Cooling Water Bypass Connection  C: Condenser Cooling Water Outlet Connection  E: Fan coils Chilled Water Inlet/Outlet Connection  G: Generator Steam / Hot Water inlet Connection  Go: Generator Condensate / Hot Water Outlet Connection |      |                              |     |       |           |            |           |            |           |            |            |                |                |            |                |                |             |            |                   |
|                |                                                                                                                                                                                                                                                                                                    |      | U = R<br>Y= 0.7W             |     | Conde |           |            | - Cano    |            |           |            |            | Į.             | <u> </u>       |            |                |                |             |            |                   |

#### Viuna Single Effect Hot Water and Steam Fired Absorption Chillers Performance Data [EN]

| `              | ıu                                                                                                                          | na Single En          | iec               | t Hot            | water   | and 5     | team i                    | rirea A                          | usorp                       | tion Chillers Performance Data [EN]                                                                                    |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|------------------|---------|-----------|---------------------------|----------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                |                                                                                                                             | COP = 0.730           | 0                 |                  |         | Sup       | er Mo                     | dels                             |                             | General Conditions                                                                                                     |  |  |  |
| Mod            | del                                                                                                                         | No. VSEH              | W                 | (ST)             | 350     | 400       | 460                       | 530                              | 600                         |                                                                                                                        |  |  |  |
| Coo            | lin                                                                                                                         | g Capacity[U          | SR                | tons]            | 1000    | 1150      | 1300                      | 1500                             | 1750                        | 1- Rated Chilled Water Outlet/Inlet Temperature: 44 / 54 [°F]                                                          |  |  |  |
| p <sub>a</sub> |                                                                                                                             | Flow Rate             | - 0               | GPM              | 2400    | 2760      | 3120                      | 3600                             | 4200                        | 2- Rated Cooling Water Inlet/Outlet Temperature:                                                                       |  |  |  |
| Chilled        | data                                                                                                                        | Pressure Drop         |                   | psi              | 8       | 10        | 14                        | 13                               | 13                          | 85 / 103 [°F] 3- Rated Hot Water Inlet/Outlet Temperature:                                                             |  |  |  |
| 3 1            |                                                                                                                             | In/out Diameter       | Е                 | Inch             | 12      | 12        | 12                        | 12                               | 14                          | 230 / 212 [ <sup>0</sup> F]                                                                                            |  |  |  |
| ng .           | a                                                                                                                           | Flow Rate             | ,                 | GPM              | 3170    | 3646      | 4121                      | 4755                             | 5548                        | 4- Rated Steam Pressure / Degree of Subcooling:<br>6[psig]/18[°F]                                                      |  |  |  |
| Cooling        | data                                                                                                                        | Pressure Drop         |                   | psi              | 9       | 11        | 14                        | 14                               | 14                          | 5- Lowest Permitted Outlet Temperature for                                                                             |  |  |  |
|                |                                                                                                                             | In/out Diameter       | Α                 | Inch             | 12      | 12        | 14                        | 14                               | 14                          | Chilled Water : 40[°F] 6- Pressure Limit For Chilled, Cooling, & Hot                                                   |  |  |  |
|                |                                                                                                                             | Hot W                 | at                | er Fir           | ed Ge   | nerato    | r Data                    |                                  |                             | Water Except Special Orders: 120[psi]                                                                                  |  |  |  |
| <u> </u>       |                                                                                                                             | Flow Rate             | - 12              | GPM              | 1890    | 2174      | 2457                      | 2835                             | 3310                        | 7- Fouling Factor For Chilled & Cooling Water:<br>0.5[°F.ft²/MBH]                                                      |  |  |  |
| Hot            | data                                                                                                                        | Pressure Drop         |                   | psi              | 8       | 11        | 14                        | 13                               | 13                          | 8- And for Hot Water: 0.25 [°F. ft²/MBH]                                                                               |  |  |  |
|                |                                                                                                                             | In/out Diameter       | G                 | Inch             | 3       | 3         | 4                         | 4                                | 4                           | 9- Adjustable Chilled, Cooling, & Hot Water Flow                                                                       |  |  |  |
|                |                                                                                                                             | Stea                  | ım                | Fire             | d Gene  | rator l   | Data                      |                                  |                             | Rate: 70~120[%]<br>10- LiBr Solution Concentration: 54 [%]                                                             |  |  |  |
| _              | Flo                                                                                                                         | w Rate                | 772               | lb/hr            | 16830   | 19355     | 21879                     | 25245                            | 29453                       | 11- Machine Room Temperature: $40 \sim 110  [^{0}F]  \&$ Relative Humidity <85%                                        |  |  |  |
| data           | Pre                                                                                                                         | essure Drop           |                   | psi              | 1       | 1.3       | 1.8                       | 1.7                              | 1.6                         |                                                                                                                        |  |  |  |
| Steam          | Inl                                                                                                                         | et Diameter           | Gi                | Inch             | 10      | 10        | 12                        | 12                               | 12                          | Cycle Components Heat Capacity (H.C.)                                                                                  |  |  |  |
| S              | Ou                                                                                                                          | tlet Diameter         | Go                | inch             | 3       | 3         | 3                         | 4                                | 4                           | based on chiller capacity(USRtons)                                                                                     |  |  |  |
| Elec           | tric                                                                                                                        | al Consumptio         | on                | kW               | 9       | 12        | 12                        | 15                               | 15                          | 1-Chilledwater H.C: Q <sub>chw</sub> =USRtons×12[MBH]                                                                  |  |  |  |
|                | Lei                                                                                                                         | ngth                  | L                 | m                | 6       | 6.5       | 7.2                       | 7.2                              | 7.4                         | 2-Cooling water H.C.: $Q_{clw} = Q_{chw} \times (1 + COP^{-1})$                                                        |  |  |  |
| data           | Не                                                                                                                          | ight                  | Н                 | m                | 3       | 3         | 3.2                       | 3.2                              | 3.2                         | 3-Generator H.C.: $Q_{gen} = Q_{chw} \times COP^{-1}$                                                                  |  |  |  |
| Dimension data | Wi                                                                                                                          | dth                   | W                 | m                | 2       | 2         | 2                         | 2.2                              | 2.2                         | Conversion Table                                                                                                       |  |  |  |
| men            | Tu                                                                                                                          | be Removal            | R                 | m                | 5       | 5.5       | 6                         | 6                                | 6                           | 1 m <sup>3</sup> /hr = 4.4 GPM 1 MBH = 252 kcal/hr                                                                     |  |  |  |
| Ē              | Un                                                                                                                          | it Ship Weight        |                   | t                | 18      | 20.7      | 22.8                      | 24.7                             | 27.5                        | $1^{\circ}F=1.8 \times {}^{\circ}C + 32$ 1 USRtons = 3.517 kW                                                          |  |  |  |
|                | Un                                                                                                                          | it Operating Wei      | ght               | t                | 21      | 23.8      | 26.2                      | 28.6                             | 31.2                        | 1 psi = 6895 Pa 1 lb = 0.454 kg                                                                                        |  |  |  |
|                |                                                                                                                             | Viuna Sing            | le                | Effect           | t Hot V | Vater a   |                           |                                  |                             | sorption Chillers Actual Cycle [SI]                                                                                    |  |  |  |
|                |                                                                                                                             | C                     | OF                | $\mathbf{P} = 0$ | .730    |           |                           | er tons Steam<br>lit/min per tor |                             | © P=143 [kPa-abs]                                                                                                      |  |  |  |
|                |                                                                                                                             |                       |                   | 70 /             | 30 %0   | 0 5A      | - 50<br>- 40<br>- 30 - 50 | Ho                               | eam or<br>t Water<br>110 [° | Cooling Water  Condenser 47 [°C]                                                                                       |  |  |  |
|                | 70  30  47  20  99 [°C], 62 [%]  99 [°C], 62 [%]  47  C Chilled Water 9.1 [lit/min] 10.2 [°C]  Absorber  Absorber  Absorber |                       |                   |                  |         |           |                           |                                  |                             |                                                                                                                        |  |  |  |
|                |                                                                                                                             | 10<br>5 e 10<br>10 30 | E<br>50<br>Soluti | 70 on Temper     |         | 110       | 2 1 Ex                    | Heat                             | <b>4</b><br>35 [°C], 54 [   | Cooling Cooling                                                                                                        |  |  |  |
|                |                                                                                                                             | TIA Diagra            | •111 1            | or sica          | & 110   | t Water C | /IIIt                     |                                  |                             | Solution Pump With Stainless Steel Filter  Water  Refrigerant Pump With Stainless Steel Filter  Stainless Steel Filter |  |  |  |

#### Viuna Single Effect Warm Water Fired Absorption Chillers Performance Data [EN]

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Viuna Sin                          | gic | Elle  | LL VV a    | 11 111 V   | vale       | rite | u Ab       | sorp     | uon        | CIIIII     | C13 I   | CITO       | l IIIaii | CE Da      | ita [L     | N    |         |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|-------|------------|------------|------------|------|------------|----------|------------|------------|---------|------------|----------|------------|------------|------|---------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COP = 0.730                        | )   |       |            | Sı         | nall       | Mode | els        |          | I          | Medi       | um M    | lode       | ls       | L          | arge l     | Mode | ls      |
| Мо             | del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. V                              | SE  | LW    | 11         | 14         | 18         | 21   | 25         | 28       | 32         | 35         | 45      | 55         | 60       | 70         | 80         | 90   | 100     |
| Cod            | olin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g Capacity[U                       | SRt | tons] | 30         | 40         | 50         | 60   | 70         | 80       | 90         | 100        | 125     | 150        | 175      | 200        | 225        | 250  | 275     |
| p <sub>e</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flow Rate                          |     | GPM   | 72         | 96         | 120        | 144  | 168        | 192      | 216        | 240        | 300     | 360        | 420      | 480        | 540        | 600  | 660     |
| Chilled        | data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pressure Drop                      |     | psi   | 6          | 6          | 7          | 8    | 6          | 9        | 11         | 6          | 7       | 10         | 13       | 11         | 14         | 13   | 13      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In/out Diameter                    | Е   | Inch  | 3          | 3          | 3          | 3    | 4          | 4        | 4          | 4          | 4       | 5          | 5        | 5          | 5          | 6    | 6       |
| ing            | E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flow Rate                          | 9   | GPM   | 114        | 152        | 190        | 228  | 266        | 304      | 342        | 380        | 476     | 571        | 666      | 761        | 856        | 951  | 1046    |
| Cooling        | Pressure Drop psi In/out Diameter A Inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |     |       | 7          | 7          | 8          | 8    | 7          | 10<br>4  | 12         | 7<br>5     | 6<br>5  | 8<br>5     | 12<br>5  | 8          | 11<br>6    | 10   | 11<br>8 |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m/out Diameter                     | А   | Hich  | 3          | . 270      |            | *70  | . 3        |          |            | 1000       | 1977    | 3          | J        |            | 0          | 0    | 0       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | _   |       |            | -          |            |      |            | d Ger    |            |            |         |            |          |            |            |      |         |
| L L            | ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow Rate                          |     | GPM   | 68         | 90         | 113        | 136  | 158        | 181      | 203        | 226        | 282     | 339        | 395      | 451<br>3   | 508        | 564  | 621     |
| Wa             | Pressure Drop psi In/out Diameter G Inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |     |       | 2 ½        | 2 ½        | 2 ½        | 3    | 3          | 3        | 3          | 3          | 4       | 4          | 5<br>4   | 5          | 4<br>5     | 5    | 6       |
| Elec           | In/out Diameter G Inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |     |       | 1.7        |            |            |      |            |          |            | 2.5        | 3.5     | 3.5        | 3.5      | 4.5        |            |      | =       |
| Elec           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                  | n   | kW    |            | 1.8        | 1.8        | 2    | 2          | 2        | 2.5        |            |         |            |          |            | 4.5        | 6    | 6       |
| ta             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ngth                               | L   | m     | 2.1        | 2.1        | 2.1        | 2.1  | 2.7        | 3        | 3          | 3.4        | 3.4     | 3.6        | 3.8      | 3.7        | 3.8        | 3.8  | 3.8     |
| Dimension data |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ight                               | Н   | m     | 1.9        | 2          | 2          | 2    | 2          | 2        | 2          | 2          | 2       | 2.1        | 2.2      | 2.2        | 2.2        | 2.5  | 2.5     |
| sion           | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dth                                | W   | m     | 1.3        | 1.3        | 1.4        | 1.4  | 1.4        | 1.4      | 1.4        | 1.5        | 1.5     | 1.5        | 1.6      | 1.6        | 1.6        | 1.7  | 1.7     |
| men            | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | be Removal                         | R   | m     | 1.6        | 1.6        | 1.6        | 1.6  | 2.2        | 2.5      | 2.5        | 2.7        | 2.7     | 3          | 3.3      | 3          | 3.3        | 3.3  | 3.3     |
| Di             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | it Ship Weight it Operating Weight | aht | t     | 1.5<br>2.0 | 1.6<br>2.2 | 1.8<br>2.5 | 2.8  | 2.6<br>3.6 | 3<br>4.3 | 3.4<br>4.5 | 3.9<br>5.3 | 5.8     | 4.5<br>6.3 | 5<br>7   | 6.3<br>8.5 | 6.9<br>9.2 | 10.3 | 8.7     |
|                | Oli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |     | -     |            |            |            |      |            |          |            |            |         |            |          |            |            | 10.5 | 11      |
| ١,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Viuna                              |     | iigie | LITEC      | . wai      | III VV     | ater |            | u Abs    | or pe      | 1011       | .111116 | 13 D       | illen    | SIUII [    | 31]        |      |         |
| <u>E</u>       | Viuna Single Effect Warm Water Fired Absorption Chillers Dimension [SI]  L W Go Power & Control Panel Panel Pump with Filter |                                    |     |       |            |            |            |      |            |          |            |            |         |            |          |            |            |      |         |

#### Viuna Single Effect Warm Water Fired Absorption Chillers Performance Data [EN]

|         |                                                                                                 | viuna Singi       | le i | riect | war   | n wa    | ter Fi | rea A | osorp                              | tion Chillers Performance Data [EN]                                                                                    |  |  |  |
|---------|-------------------------------------------------------------------------------------------------|-------------------|------|-------|-------|---------|--------|-------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         |                                                                                                 | COP = 0.730       | )    |       |       | Hea     | vy M   | odels | Š.                                 | General Conditions                                                                                                     |  |  |  |
| Mod     | del                                                                                             | No. V             | /SE  | ELW   | 110   | 125     | 140    | 160   | 180                                | 1- Rated Chilled Water Outlet/Inlet Temperature:                                                                       |  |  |  |
| Coo     | lin                                                                                             | g Capacity[U      | SR   | tons] | 300   | 350     | 400    | 450   | 500                                | 44/54 [°F] 2- Rated Cooling Water Inlet/Outlet Temperature:                                                            |  |  |  |
| p;      | _                                                                                               | Flow Rate         |      | GPM   | 720   | 840     | 960    | 1080  | 1200                               | 85/100 [ <sup>0</sup> F]<br>3- Rated Hot Water Inlet/Outlet Temperature:                                               |  |  |  |
| Chilled | data                                                                                            | Pressure Drop     |      | psi   | 13    | 13      | 6      | 9     | 6                                  | 195/180 [°F]                                                                                                           |  |  |  |
| 0 1     |                                                                                                 | In/out Diameter   | Е    | Inch  | 6     | 8       | 8      | 8     | 8                                  | 4- Lowest Permitted Leaving Chilled Water Temp.:                                                                       |  |  |  |
| ing     | а                                                                                               | Flow Rate         |      | GPM   | 1141  | 1331    | 1521   | 1712  | 1902                               | 40[ <sup>0</sup> F]<br>5- Pressure Limit For Chilled, Cooling, & Hot Water                                             |  |  |  |
| Cooling | data                                                                                            | Pressure Drop     |      | psi   | 10    | 10      | 6      | 9     | 8                                  | Except Special Orders: 100[psig]                                                                                       |  |  |  |
| Ľ       |                                                                                                 | In/out Diameter   | Α    | Inch  | 8     | 8       | 10     | 10    | 10                                 | 6- Fouling Factor For Chilled, Cooling Water:<br>0.5[ <sup>0</sup> F.ft <sup>2</sup> /MBH]                             |  |  |  |
|         |                                                                                                 | Warm Wa           | ate  | r Fir | ed Ge | nerat   | or Da  | ıta   |                                    | 7- And for Hot Water: 0.25 [ <sup>0</sup> F. ft <sup>2</sup> /MBH]                                                     |  |  |  |
|         |                                                                                                 | Flow Rate         |      | GPM   | 677   | 790     | 903    | 1016  | 1128                               | 8- Adjustable Chilled, Cooling, & Hot Water Flow Rate: 70~120[%]                                                       |  |  |  |
| Warm    | data                                                                                            | Pressure Dron     | П    | nsi   | 4     | 4       | 5      | 6     | 5                                  | 9- LiBr Solution Concentration: 54 [%                                                                                  |  |  |  |
| S S     | J                                                                                               | In/out Diameter   | G    | Inch  | 6     | 6       | 8      | 8     | 8                                  | 10- Machine Room Temperature: 40 ~ 110 [°F] & Relative Humidity <85%                                                   |  |  |  |
| Elect   | tric                                                                                            | al Consumptio     | n    | kW    | 6     | 8       | 8      | 10    | 10                                 | Cycle Components Heat Capacity (H.C.)                                                                                  |  |  |  |
|         | Lei                                                                                             | ngth              | m    | 4     | 4     | 4.8     | 5.3    | 4.9   | based on chiller capacity(USRtons) |                                                                                                                        |  |  |  |
| e.      | Length L<br>Height H                                                                            |                   |      | m     | 2.5   | 2.6     | 2.6    | 2.6   | 2.8                                | 1-Chilledwater H.C: Q <sub>chw</sub> =USRtons×12[MBH]                                                                  |  |  |  |
| on dat  | Height H Width W Tube Removal R Unit Ship Weight                                                |                   |      | m     | 1.7   | 1.8     | 1.8    | 1.8   | 1.8                                | 2-Cooling water H.C.: $Q_{clw} = Q_{chw} \times (1+COP^{-1})$<br>3-Generator H.C.: $Q_{gen} = Q_{chw} \times COP^{-1}$ |  |  |  |
| ensi    | Tu                                                                                              | be Removal        | R    | m     | 3.3   | 3.3     | 4      | 4.4   | 4                                  | Conversion Table                                                                                                       |  |  |  |
| Dim     | Un                                                                                              | it Ship Weight    |      | t     | 9.3   | 10.5    | 12     | 13    | 14.5                               | 1 m <sup>3</sup> /hr = 4.4 GPM<br>1 MBH = 252 kcal/hr<br>1 psi = 6895 Pa                                               |  |  |  |
|         | Un                                                                                              | it Operating Weig | ght  | t     | 11.8  | 13.6    | 15.8   | 17    | 19                                 | 1 MBH = 252 kcal/hr<br>1 ${}^{0}F$ =1.8 $\times {}^{0}C$ + 32<br>1 lb = 0.454 kg                                       |  |  |  |
| 5<br>0  | Unit Operating Weight   t   11.8   13.6   15.8   17   19   1 °F=1.8 × °C + 32   1 lb = 0.454 kg |                   |      |       |       |         |        |       |                                    |                                                                                                                        |  |  |  |
|         |                                                                                                 | "PTX " Diagra     | am   | for W | arm W | ater Ui | nit    |       |                                    | Solution Pump With Stainless Steel Filter  Solution Pump With Stainless Steel Filter  Stainless Steel Filter           |  |  |  |

#### Viuna Double Effect Direct Fired Absorption Chillers / Heaters Performance Data [EN]

|                     | Viuna Double Effect Direct Fired Absorption Chillers / Heaters Performance Data [EN]  COP = 1.200 |                     |          |       |               |      |                  |         |        |          |             |      |       |          |          |        |                                         |             |      |                  |      |      |      |
|---------------------|---------------------------------------------------------------------------------------------------|---------------------|----------|-------|---------------|------|------------------|---------|--------|----------|-------------|------|-------|----------|----------|--------|-----------------------------------------|-------------|------|------------------|------|------|------|
|                     | C                                                                                                 | OP = 1.200          |          |       | S             | mal  | l Mo             | odel    | s      |          |             |      | Med   | lium     | Мо       | dels   |                                         |             | J    | Larg             | e Mo | dels | 5    |
| Mod                 | lel N                                                                                             | o. VD               | EDF      | 11    | 14            | 18   | 21               | 25      | 28     | 32       | 35          | 45   | 55    | 60       | 70       | 80     | 90                                      | 100         | 110  | 125              | 140  | 160  | 180  |
| Coo                 | ling (                                                                                            | Capacity [US]       | Rtons]   | 30    | 40            | 50   | 60               | 70      | 80     | 90       | 100         | 125  | 150   | 175      | 200      | 225    | 250                                     | 275         | 300  | 350              | 400  | 450  | 500  |
| Hea                 | ting                                                                                              | Capacity            | [MBH]    | 300   | 400           | 500  | 600              | 700     | 800    | 900      | 1000        | 1250 | 1500  | 1750     | 2000     | 2250   | 2500                                    | 2750        | 3000 | 3500             | 4000 | 4500 | 5000 |
| р                   | _                                                                                                 | Flow Rate           | GPM      | 72    | 96            | 120  | 144              | 168     | 192    | 216      | 240         | 300  | 360   | 420      | 480      | 540    | 600                                     | 660         | 720  | 840              | 960  | 1080 | 1200 |
| Chilled             | water<br>Data                                                                                     | Pressure Drop       | psi      | 6     | 6             | 7    | 8                | 6       | 9      | 11       | 6           | 7    | 10    | 13       | 11       | 14     | 13                                      | 13          | 13   | 13               | 6    | 9    | 6    |
| o<br>O              |                                                                                                   | In/Out Diam.        | E Inch   | 3     | 3             | 3    | 3                | 4       | 4      | 4        | 4           | 4    | 5     | 5        | 5        | 5      | 6                                       | 6           | 6    | 8                | 8    | 8    | 8    |
| Bu                  | a                                                                                                 | Flow Rate           | GPM      | 89    | 118           | 148  | 177              | 207     | 236    | 267      | 295         | 369  | 443   | 516      | 590      | 664    | 738                                     | 811         | 885  | 1033             | 1180 | 1328 | 1475 |
| Cooling             | Water                                                                                             | Pressure Drop       | psi      | 7     | 7             | 8    | 8                | 7       | 10     | 12       | 7           | 6    | 8     | 12       | 8        | 11     | 10                                      | 11          | 10   | 10               | 6    | 9    | 8    |
|                     |                                                                                                   | In/Out Diam.        | A Inch   | 3     | 3             | 3    | 3                | 4       | 4      | 4        | 5           | 5    | 5     | 5        | 6        | 6      | 6                                       | 6           | 8    | 8                | 8    | 8    | 10   |
| ing                 | a                                                                                                 | Flow Rate           | GPM      | 60    | 80            | 100  | 120              | 140     | 160    | 180      | 200         | 250  | 300   | 350      | 400      | 450    | 500                                     | 550         | 600  | 700              | 800  | 900  | 1000 |
| Heating             | water<br>Data                                                                                     | Pressure Drop       | psi      | 7     | 7             | 8    | 9                | 7       | 9      | 11       | 7           | 8    | 10    | 13       | 11       | 14     | 13                                      | 13          | 13   | 13               | 7    | 10   | 7    |
|                     |                                                                                                   |                     | F Inch   | 2 ½   | 2 ½           | 2 ½  | 3                | 3       | 3      | 3        | 4           | 4    | 4     | 4        | 5        | 5      | 5                                       | 6           | 6    | 6                | 8    | 8    | 8    |
| ıral                | S A                                                                                               | Cooling/Heatin      | g CFM    | 6     | 8             | 10   | 12               | 14      | 16     | 18       | 20          | 25   | 30    | 35       | 40       | 45     | 50                                      | 55          | 60   | 70               | 80   | 90   | 100  |
| Natural             | Flow                                                                                              | Min. Inlet Pressu   |          | 0.25  | 0.25          | 0.25 | 0.25             | 0.25    | 0.25   | 0.25     | 0.25        | 0.25 | 0.25  | 0.5      | 0.5      | 0.5    | 0.5                                     | 0.5         | 0.5  | 0.5              | 0.5  | 0.5  | 0.5  |
|                     |                                                                                                   |                     | G Inch   | 6     | 6             | 6    | 7                | 7       | 8      | 8        | 9           | 9    | 10    | 10       | 12       | 12     | 12                                      | 14          | 14   | 14               | 16   | 16   | 18   |
| Elec                | trica                                                                                             | l Consumptio        | n kW     | 2.2   | 2.2           | 2.2  | 2.5              | 2.5     | 2.5    | 3.2      | 3.2         | 4.5  | 4.5   | 4.5      | 6        | 6      | 7                                       | 8           | 8    | 9                | 10   | 11   | 11   |
| SI                  | Leng                                                                                              | gth                 | L m      | 2.1   | 2.1           | 2.1  | 2.1              | 2.7     | 3      | 3        | 3.4         | 3.4  | 3.6   | 3.8      | 3.7      | 3.8    | 3.8                                     | 3.8         | 4    | 4                | 4.8  | 5.3  | 4.9  |
| ata                 | Heig                                                                                              | ht                  | H m      | 1.9   | 2             | 2    | 2                | 2       | 2      | 2        | 2           | 2    | 2     | 2.2      | 2.2      | 2.2    | 2.2                                     | 2.4         | 2.4  | 2.5              | 2.5  | 2.6  | 2.6  |
| n Da                | Widt                                                                                              | th                  | W m      | 1.8   | 1.8           | 1.8  | 1.9              | 1.9     | 1.9    | 1.9      | 2.0         | 2.0  | 2.0   | 2.0      | 2.1      | 2.1    | 2.1                                     | 2.2         | 2.2  | 2.3              | 2.4  | 2.5  | 2.6  |
| nsio                | Tube                                                                                              | e Removal           | R m      | 1.6   | 1.6           | 1.6  | 1.6              | 2.2     | 2.5    | 2.5      | 2.7         | 2.7  | 3     | 3.3      | 3        | 3.3    | 3.3                                     | 3.3         | 3.3  | 3.3              | 4    | 4.4  | 4    |
| Dimension Data [SI] | Unit                                                                                              | Ship Weight         | t        | 1.8   | 2.0           | 2.2  | 2.4              | 2.6     | 2.8    | 3.0      | 3.3         | 3.5  | 3.9   | 4.3      | 4.6      | 4.9    | 5.3                                     | 5.6         | 6.5  | 7.2              | 7.9  | 8.6  | 9.5  |
| D                   | Unit                                                                                              | Operating Weig      | ht t     | 2.5   | 2.8           | 3.2  | 3.5              | 3.8     | 4      | 4.4      | 4.8         | 5.2  | 5.8   | 6.3      | 6.7      | 7.2    | 7.8                                     | 8.4         | 9.5  | 10.4             | 11.5 | 12.7 | 13.9 |
|                     |                                                                                                   | 1                   | Viuna    | Dou   | ble           | Effe | ct D             | )ire    | ct Fi  |          |             |      | ion ( | Chill    | ers      | Dim    | ensi                                    | on [        | SI]  |                  |      |      |      |
|                     |                                                                                                   | C                   | L        |       | All Land      |      | В                | F       |        | W        | +0.5        |      |       | -        | <u> </u> |        |                                         | L           |      |                  | -    | _    |      |
|                     |                                                                                                   | E                   | U        |       |               |      | $A$ $0.2 \sim 0$ | 0.3     |        | 0.<br>Y+ | 5.<br>0.5[n | nl   |       |          |          |        | 1 × × × × × × × × × × × × × × × × × × × |             |      |                  | H    |      |      |
|                     |                                                                                                   | -                   |          |       |               | -    |                  |         | -      |          |             | -    |       | A        |          |        | N                                       | - C-        |      |                  | E    |      |      |
|                     |                                                                                                   | A: Abso             | orber Co |       | nark<br>Water |      | Conr             | nection | n      |          |             |      |       | <u>B</u> | T        | n V    |                                         | <b>1</b> °. |      |                  | Ī    |      |      |
|                     |                                                                                                   | B: Cool             |          |       |               |      |                  |         |        |          |             | -    | R     | ,        |          |        |                                         |             |      | H                | S    | 1    |      |
|                     |                                                                                                   | C: Cond             |          |       | ii            |      |                  |         |        |          |             | 1    |       |          |          | - IIII | -                                       |             | 0 FC |                  |      | 1    |      |
|                     |                                                                                                   | E: Fan c            |          |       |               |      |                  |         |        |          |             |      |       | E        | 100      |        | N.                                      |             | •    | 7.9              |      |      |      |
|                     |                                                                                                   | F: Fan c<br>G: Flue |          |       |               |      |                  | nnect   | ions ( | Optio    | onal)       |      |       |          |          |        | 0                                       |             |      |                  |      |      |      |
|                     |                                                                                                   | U=R                 |          | uniot | Comi          | CUOI | •                |         |        |          |             |      |       | $\Box G$ |          |        | ±.                                      |             |      |                  | )    |      |      |
|                     |                                                                                                   | Y=0.85              | W        |       |               |      |                  |         |        |          |             |      |       |          | -        | S      | •                                       | 300         |      | i <del>a</del> i |      |      |      |

#### Viuna Double Effect Direct Fired Absorption Chillers / Heaters Performance Data [EN]

| _                   |                              |                                                  |                 |                                         |                                                      |                                     | 1                                                                                                          |                                 | 1                                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s / Heaters Performance Data [EN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|------------------------------|--------------------------------------------------|-----------------|-----------------------------------------|------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | (                            | COP = 1.200                                      | 0               |                                         |                                                      |                                     | Hea                                                                                                        | vy Mo                           | odels                                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | odel l                       |                                                  |                 | DF                                      | 220                                                  | 250                                 | 280                                                                                                        | 320                             | 350                                               | 400                             | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1- Rated Chilled Water Outlet/Inlet Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | _                            | Capacity [U                                      | 075000          |                                         | 600                                                  | 700                                 | 800                                                                                                        | 900                             | 1000                                              | 1150                            | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44/54 [°F] 2- Rated Cooling Water Inlet/Outlet Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| He                  | eating                       | g Capacity                                       | [N              | IBH]                                    | 6000                                                 | 7000                                | 8000                                                                                                       | 9000                            | 10000                                             | 11500                           | 13000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85/100 [°F]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| led                 | ta                           | Flow Rate                                        |                 | GPM                                     | 1440                                                 | 1680                                | 1920                                                                                                       | 2160                            | 2400                                              | 2760                            | 3120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3- Rated Heating Water Outlet / Inlet Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chilled             | Water<br>Data                | Pressure Dro                                     |                 | psi                                     | 12                                                   | 11                                  | 10                                                                                                         | 14                              | 8                                                 | 10                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $150/140$ [ $^{0}$ F] 4- Lowest Permitted Outlet Temperature for Chilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H                   |                              | In/Out Diam.                                     | Е               | Inch                                    | 8                                                    | 10                                  | 10                                                                                                         | 10                              | 12                                                | 12                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water: 40[°F]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ing                 | ta                           | Flow Rate                                        |                 | GPM                                     | 1770                                                 | 2065                                | 2360                                                                                                       | 2655                            | 2950                                              | 3393                            | 3835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5- Pressure Limit For Chilled, Cooling, & Heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cooling             | Water<br>Data                | Pressure Drop                                    |                 | psi                                     | 10                                                   | 10                                  | 9                                                                                                          | 10                              | 8                                                 | 10                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water Except Special Orders: 120[psi] 6- Fouling Factor For Chilled , Cooling & Heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ⊫                   |                              | In/Out Diam.                                     | A               | Inch                                    | 8                                                    | 10                                  | 10                                                                                                         | 10                              | 12                                                | 12                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water: 0.5[ <sup>o</sup> F.ft <sup>2</sup> /MBH]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Heating             | er ta                        | Flow Rate                                        |                 | GPM                                     | 1200                                                 | 1400                                | 1600                                                                                                       | 1800                            | 2000                                              | 2300                            | 2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7- Adjustable Chilled, Cooling, & Heating Water<br>Flow Rate: 70~120[%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Heat                | Water<br>Data                | Pressure Dro                                     | р               | psi                                     | 8                                                    | 9                                   | 8                                                                                                          | 10                              | 8                                                 | 9                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8- Natural gas consumption is calculated by heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ľ                   |                              | In/Out Diam.                                     | F               | Inch                                    | 6                                                    | 8                                   | 8                                                                                                          | 8                               | 10                                                | 10                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | value: 50[MBH/CFM] or 7400 [kcal/m³]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ral                 | s 3                          | Cooling / Hea                                    | ting            | CFM                                     | 120                                                  | 140                                 | 160                                                                                                        | 180                             | 200                                               | 230                             | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9- LiBr Solution Concentration: $54 [\%]$<br>10- Machine Room Temperature: $40 \sim 110 [^{0}F] \&$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Natural             | Gas<br>Flow                  | Min. Inlet Press                                 | sure            | psig                                    | 0.5                                                  | 0.5                                 | 0.5                                                                                                        | 0.5                             | 0.5                                               | 0.5                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Relative Humidity <85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ĺ                   |                              | Exhaust Dim.                                     | G               | Inch                                    | 18                                                   | 20                                  | 20                                                                                                         | 22                              | 24                                                | 26                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cycle Components Heat Capacity (H.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ele                 | ectrica                      | al Consumptio                                    | on              | kW                                      | 12                                                   | 13                                  | 14                                                                                                         | 16                              | 18                                                | 22                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | based on chiller capacity(USRtons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | Leng                         | gth                                              | L               | m                                       | 5.4                                                  | 5.5                                 | 5.6                                                                                                        | 6                               | 6                                                 | 6.5                             | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-Chilled water H.C: Q <sub>chw</sub> =USRtons×12[MBH]<br>2-Cooling water H.C.: Q <sub>clw</sub> = Q <sub>chw</sub> ×(1+COP-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| [SI]                | Heig                         | ht                                               | Н               | m                                       | 2.8                                                  | 2.9                                 | 3.0                                                                                                        | 3.0                             | 3.0                                               | 3.0                             | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-High Temp. Generator H.C.: Q <sub>gen</sub> = Q <sub>chw</sub> ×COP-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                   |                              |                                                  |                 |                                         |                                                      | 2.0                                 | 3.0                                                                                                        | 3.2                             | 3.2                                               | 3.4                             | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conversion Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Date                | Wid                          | th                                               | W               | m                                       | 2.8                                                  | 3.0                                 | 3.0                                                                                                        | 5.2                             | J                                                 |                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sion Data           | Wid                          | th<br>e Removal                                  | W<br>R          | m<br>m                                  | 4.4                                                  | 4.4                                 | 4.4                                                                                                        | 4.8                             | 5                                                 | 5.5                             | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 m <sup>3</sup> /hr = 4.4 GPM 1 MBH = 252 kcal/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nension Data        | Wide<br>Tube<br>Unit         |                                                  |                 |                                         |                                                      | 1 200                               |                                                                                                            |                                 |                                                   | 5.5<br>22.0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1^{0}$ F=1.8 × $^{0}$ C + 32 1 USRtons = 3.517 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dimension Data [SI] | Tube<br>Unit<br>Unit         | e Removal                                        | R               | m                                       | 4.4                                                  | 4.4                                 | 4.4                                                                                                        | 4.8                             | 5                                                 |                                 | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dimension Data      | Tube<br>Unit<br>Unit         | e Removal<br>Ship Weight                         | R               | m<br>t                                  | 4.4<br>13.0<br>17.8                                  | 4.4<br>14.8<br>19.8                 | 4.4<br>16.0<br>21.5                                                                                        | 4.8<br>17.8<br>23.5             | 5<br>19.8<br>25.5                                 | 22.0                            | 6.0<br>24.0<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1^{0}F=1.8 \times {}^{0}C+32$ 1 USRtons = 3.517 kW<br>1 psi = 6895 Pa 1 lb = 0.454 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dimension Data      | Widt<br>Tube<br>Unit<br>Unit | e Removal Ship Weight Operating Wei              | R<br>ight<br>Vi | m<br>t<br>t                             | 4.4<br>13.0<br>17.8                                  | 4.4<br>14.8<br>19.8                 | 4.4<br>16.0<br>21.5<br>ect D                                                                               | 4.8<br>17.8<br>23.5<br>irect    | 5<br>19.8<br>25.5<br><b>Fired</b>                 | 22.0<br>28.0<br><b>Absol</b>    | 6.0<br>24.0<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1°F=1.8 ×°C + 32 1 USRtons = 3.517 kW<br>1 psi = 6895 Pa 1 lb = 0.454 kg<br>1°CFM = 1.699 m³/hr 1 inch = 25.4 mm<br>1°Chillers Actual Cycle [SI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dimension Data      | Widt<br>Tube<br>Unit<br>Unit | e Removal<br>Ship Weight                         | R<br>ight<br>Vi | m<br>t<br>t                             | 4.4<br>13.0<br>17.8                                  | 4.4<br>14.8<br>19.8                 | 4.4<br>16.0<br>21.5<br>ect D                                                                               | 4.8<br>17.8<br>23.5<br>irect    | 5<br>19.8<br>25.5<br><b>Fired</b>                 | 22.0<br>28.0<br><b>Abso</b>     | 6.0<br>24.0<br>30.0<br><b>rption</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1°F=1.8 ×°C + 32 1 USRtons = 3.517 kW 1 psi = 6895 Pa 1 lb = 0.454 kg 1CFM = 1.699 m³/hr 1 inch = 25.4 mm  1 Chillers Actual Cycle [SI]  tion Level Control © Condenser Outlet Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dimension Data      |                              | e Removal Ship Weight Operating Wei              | R Vi            | m<br>t<br>t                             | 4.4<br>13.0<br>17.8<br><b>Doub</b>                   | 4.4<br>14.8<br>19.8                 | 4.4<br>16.0<br>21.5<br>ect D<br>Exhaust<br>Flue<br>Gases                                                   | 4.8<br>17.8<br>23.5<br>irect    | 5<br>19.8<br>25.5<br><b>Fired</b>                 | 22.0<br>28.0<br><b>Absol</b>    | 6.0<br>24.0<br>30.0<br><b>rption</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 USRtons = 3.517 kW 1 psi = 6895 Pa 1 lb = 0.454 kg 1 CFM = 1.699 m <sup>3</sup> /hr 1 inch = 25.4 mm  1 Chillers Actual Cycle [SI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dimension Data      |                              | e Removal Ship Weight Operating Wei              | R Vi            | m t t una                               | 4.4<br>13.0<br>17.8<br><b>Doub</b>                   | 4.4<br>14.8<br>19.8<br>le Eff       | 4.4<br>16.0<br>21.5<br>ect D<br>Exhaust<br>Flue<br>Gases                                                   | 4.8<br>17.8<br>23.5<br>irect    | 5 19.8 25.5 Fired mal Watering Coil               | 22.0 28.0  Absol Hot Wa In Out  | 6.0<br>24.0<br>30.0<br><b>rption</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 USRtons = 3.517 kW 1 psi = 6895 Pa 1 lb = 0.454 kg 1 CFM = 1.699 m³/hr 1 inch = 25.4 mm  1 Chillers Actual Cycle [SI]  1 Low Temp. Condenser Outlet Cooling 37.8 [°C] Water  1 Childed Water 9, Illiuminton]  1 Childed Water 9, Illiuminton]  1 Exchanger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dimension Data      |                              | e Removal Ship Weight Operating Wei              | R Vi            | m t t t una                             | 4.4<br>13.0<br>17.8<br><b>Doub</b>                   | 4.4<br>14.8<br>19.8<br>le Eff       | 4.4  16.0  21.5  Exhaust Flue Gases  98.5  50  00  1.14  [Edy] amssadd  00  00  00  00  00  00  00  00  00 | 4.8<br>17.8<br>23.5<br>irect    | 5<br>19.8<br>25.5<br>Fired                        | 22.0 28.0 Absor                 | 6.0<br>24.0<br>30.0<br><b>rption</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 USRtons = 3.517 kW 1 psi = 6895 Pa 1 lb = 0.454 kg 1 CFM = 1.699 m³/hr 1 inch = 25.4 mm  1 Chillers Actual Cycle [SI]  1 tion Level Control Generator Gene |
| Dimension Data      |                              | e Removal Ship Weight Operating Wei              | R Vi 1.2        | m t t t una                             | 4.4<br>13.0<br>17.8<br><b>Doub</b>                   | 4.4<br>14.8<br>19.8<br>19.8<br>19.8 | 4.4  16.0  21.5  Exhaust Flue Gases  98.5  50  10  10  10  10  10  10  10  10  1                           | 4.8<br>17.8<br>23.5<br>irect    | 5 19.8 25.5 Fired mal Watering Coil               | 22.0 28.0 Absor                 | 6.0<br>24.0<br>30.0<br>rption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 USRtons = 3.517 kW 1 psi = 6895 Pa 1 lb = 0.454 kg 1 CFM = 1.699 m³/hr 1 inch = 25.4 mm  1 Chillers Actual Cycle [SI]  1 Low Temp. Condenser Outlet Cooling 37.8 [°C] Water  1 Childed Water 9 (Childed Water 9). (Illuminston) 1 Heat Exchanger  1 USRtons = 3.517 kW 1 lb = 0.454 kg 1 cross of the cooling of |
| Dimension Date      |                              | COP =                                            | R Vi Vi 1.2     | m t t t d d d d d d d d d d d d d d d d | 4.4<br>13.0<br>17.8<br><b>Doub</b>                   | 4.4<br>14.8<br>19.8<br>le Eff       | 4.4  16.0  21.5  Exhaust Flue Gases  98.5  50  10  10  10  10  10  10  10  10  1                           | 4.8 17.8 23.5 irect Optio Heat  | 5 19.8 25.5 Fired mal Watering Coil               | 22.0 28.0  Absol  Hot Wa In Out | 6.0 24.0 30.0  rption  ter Solution  Fire Tubes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 USRtons = 3.517 kW  1 psi = 6895 Pa 1 lb = 0.454 kg  1 CFM = 1.699 m³/hr  1 inch = 25.4 mm  1 Chillers Actual Cycle [SI]  1 tion Level Control  Condenser Outlet Cooling Generator  37.8 [°C] Water  Chilled Water  9.1 [librain Inch]  Exchanger  Absorber  Refrigerant Level Control  Refrigerant Level Control  Refrigerant Pump With Pump With Pump With                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 6                 | 7 ch. 330                    | COP =  Removal  Ship Weight Operating Wei  COP = | R Vi 1.2        | m t t t una                             | 4.4<br>13.0<br>17.8<br><b>Doub</b><br>(X = \$4.55 M4 | 4.4<br>14.8<br>19.8<br>le Eff       | 4.4  16.0  21.5  Exhaust Flue Gases  50  50  60  60  60  60  60  60  60  60                                | 4.8 17.8 23.5 irect Option Heat | 19.8 25.5 Fired mal Water ing Coil Tapered Turbul | 22.0 28.0  Hot Wa In Out        | 6.0 24.0 30.0  rption  ter Solution  ter Solution  anded hell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 USRtons = 3.517 kW 1 psi = 6895 Pa 1 lb = 0.454 kg 1 CFM = 1.699 m³/hr 1 inch = 25.4 mm  1 Chillers Actual Cycle [SI]  tion Level Control  Generator  Ge |
| 1 6                 | 7 ch. 330                    | COP =                                            | R Vi 1.2        | m t t t una                             | 4.4<br>13.0<br>17.8<br><b>Doub</b><br>(X = \$4.55 M4 | 4.4<br>14.8<br>19.8<br>le Eff       | 4.4  16.0  21.5  Exhaust Flue Gases  50  50  60  60  60  60  60  60  60  60                                | 4.8 17.8 23.5 irect Option Heat | 19.8 25.5 Fired mal Water ing Coil Tapered Turbul | 22.0 28.0  Hot Wa In Out        | 6.0 24.0 30.0  rption  ter Solution  contained the solution of | 1 USRtons = 3.517 kW 1 psi = 6895 Pa 1 lb = 0.454 kg 1 CFM = 1.699 m³/hr 1 inch = 25.4 mm  1 Chillers Actual Cycle [SI]  tion Level Control  Generator  Ge |

## Viuna Double Effect Steam Fired Absorption Chillers Performance & Dimension Data [EN]

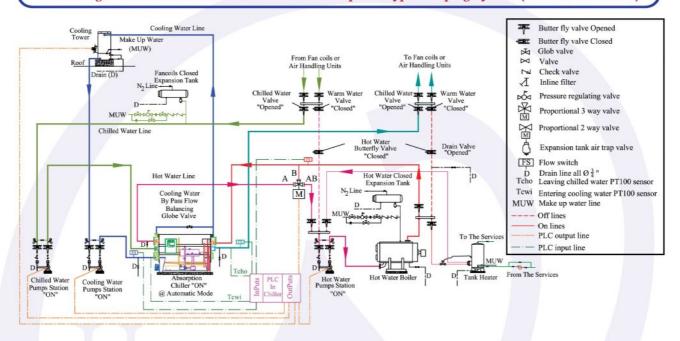
|                    |       | C    | OP = 1.200                              |      |             | Me    | diun    | ı Mo    | dels    | La          | rge l   | Mode      | ls   |          | Heav    | v Ma         | ndel     | 2           |               | Si                   | uper     | Mode     | els   |          |
|--------------------|-------|------|-----------------------------------------|------|-------------|-------|---------|---------|---------|-------------|---------|-----------|------|----------|---------|--------------|----------|-------------|---------------|----------------------|----------|----------|-------|----------|
| Mo                 | d     | el N |                                         | (H   | (W)         | 35    | 55      | 70      | 90      | 110         | 125     | 140       | 160  | 180      | 220     | 250          | 280      | 320         | 350           | 400                  | 460      | 530      | 600   | 700      |
|                    |       |      | apacity [USR                            | tor  | ısl         | 100   | 150     | 200     | 250     | 300         | 350     | 400       | 450  | 500      | 600     | 700          | 800      | 900         | 1000          | 1150                 | 1300     | 1500     | 1750  | 2000     |
| 000                |       | - B  | apacity [oon                            |      | .oj         |       |         |         |         | ta (54      |         |           |      | $\vdash$ |         |              |          |             | $\overline{}$ | 1100                 | 2000     | 1000     |       |          |
|                    |       |      | Elass Data                              |      | CDM         |       | 360     | 480     |         | È           | 840     |           | 1080 |          |         |              |          |             |               | 2760                 | 2120     | 3600     | 4200  | 4800     |
| Chilled            | Water | Data | Flow Rate                               |      | GPM         |       |         |         | 600     | 720         |         |           |      |          |         |              |          |             | 2400          | 2760                 | 3120     |          |       |          |
| Chi                | Wa    | Ď    | Pressure Dre In/Out Diam.               | Е    | psi<br>Inch | 6     | 11<br>5 | 11<br>5 | 14<br>6 | 13          | 15<br>8 | 7<br>8    | 9    | 8        | 12<br>8 | 11           | 10       | 14          | 8<br>12       | 10<br>12             | 14<br>12 | 13<br>12 | 13    | 13<br>14 |
| ⊨                  | -     |      | III/Out Diaiii.                         | L    | HICH        | Coc   | Ů       |         | _       | ta (85      |         |           |      | _        |         |              |          |             |               | 12                   | 12       | 12       | 14    | 14       |
|                    | =     |      | Flow Rate                               |      | GPM         |       | 443     | 590     | 738     | 885         |         | 1180      |      |          |         |              |          | <del></del> | 2950          | 3393                 | 3835     | 4425     | 5163  | 5900     |
| Cooling            | Water | Data | Pressure Dr                             | on   | psi         | 7     | 8       | 8       | 10      | 10          | 10      | 6         | 9    | 8        | 10      | 10           | 9        | 10          | 8             | 10                   | 12       | 12       | 13    | 14       |
| Coo                | Wa    | D    | In/Out Diam.                            | A    | Inch        | 4     | 5       | 5       | 6       | 6           | 8       | 8         | 8    | 8        | 8       | 10           | 10       | 10          | 12            | 12                   | 12       | 12       | 14    | 14       |
| _                  |       |      | m/out blant.                            |      |             | Ľ     |         | _       |         | or Dat      |         |           |      |          |         |              |          |             |               |                      |          | 12       | 17    | 14       |
|                    |       |      | Flow Rate                               | 110  | GPM         |       | 177     | 236     |         | 354         | 413     | 472       | 531  |          | 708     |              | _        | 1062        |               | <b>ивп</b> ј<br>1357 |          | 1770     | 2065  | 2360     |
| Hot                | Water | Data | Pressure Dre                            | on   | psi         | 3     | 4       | 4       | 5       | 5           | 6       | 6         | 7    | 7        | 9       | 10           | 11       | 12          | 7             | 9                    | 11       | 10       | 11    | 12       |
| H                  | Wa    | Da   |                                         | -    |             | 3     | 4       | 4       | 100000  | 5           |         |           |      |          |         |              | 10       |             | 20,000        |                      |          |          |       |          |
| ┡                  | _     |      | In/Out Diam.                            | G    | Inch        | 3     | 4<br>Ch | 4       | 5       |             | 6       | 6<br>Data | 6    | 8        | 8       | 8<br>0r      | 177.7    | 10<br>0E)   | 10            | 10                   | 10       | 12       | 12    | 12       |
| ⊩                  | T     | F1   | ъ.                                      |      |             | 006   |         |         |         | Gene        |         |           |      |          |         |              |          |             | 0060          |                      | 10010    | 4.4500   | 48055 | 40000    |
| ata                | Н     |      | Rate                                    | _    | Lb/hr       |       | 1479    |         | 2465    | 2958        | 3451    | 3944      | 4437 |          | 5916    |              |          |             |               | - 8                  | 12818    |          | 2000  |          |
| u                  | Н     |      | sure Drop                               |      | psi         | 0.2   | 0.2     | 0.3     | 0.4     | 0.3         | 0.4     | 0.5       | 0.6  | 0.6      | 0.8     | 0.8          | 1        | 1.2         | 8.0           | 1                    | 1.2      | 1.4      | 1.4   | 1.8      |
| Steam Data         | Н     |      | Diameter                                |      | Inch        |       | 2½      | 3       | 3       | 3           | 4       | 4         | 4    | 5        | 5       | 5            | 6        | 6           | 6             | 6                    | 8        | 8        | 8     | 8        |
|                    | 1     | Outl | et Diameter                             | Go   | Inch        | 1     | 1       | 11/4    | 11/4    | 11/4        | 1½      | 1½        | 1½   | 2        | 2       | 2            | 2½       | 2½          | 2½            | 2½                   | 3        | 3        | 3     | 3        |
| Ele                | ct    | rica | l Consumpti                             | on   | kW          | 3     | 4       | 5.5     | 6.5     | 7           | 8       | 9         | 10   | 11       | 12      | 13           | 14       | 15          | 16            | 18                   | 20       | 22       | 24    | 26       |
| [IS                |       | Leng | gth                                     | L    | m           | 3.4   | 3.6     | 3.7     | 3.8     | 4.0         | 4.0     | 4.8       | 5.3  | 4.9      | 5.4     | 5.5          | 5.6      | 6.0         | 6.0           | 6.5                  | 7.2      | 7.2      | 7.4   | 8.0      |
| ata                | L     | Heig | ht                                      | Н    | m           | 2     | 2       | 2.2     | 2.2     | 2.4         | 2.5     | 2.5       | 2.6  | 2.6      | 2.8     | 2.9          | 3.0      | 3.0         | 3.0           | 3.0                  | 3.2      | 3.2      | 3.2   | 3.2      |
| imension Data [SI] | Ľ     | Widt | th                                      | W    | m           | 1.8   | 1.8     | 2.0     | 2.0     | 2.3         | 2.3     | 2.3       | 2.5  | 2.5      | 2.5     | 2.7          | 2.7      | 2.8         | 2.8           | 2.8                  | 3.0      | 3.0      | 3.0   | 3.0      |
| ===<br>nsic        | ľ     | Γube | e Removal                               | R    | m           | 2.7   | 3       | 3       | 3.3     | 3.3         | 3.3     | 4.0       | 4.4  | 4.0      | 4.4     | 4.4          | 4.4      | 4.8         | 5.0           | 5.5                  | 6.0      | 6.0      | 6.0   | 6.6      |
| <br>ime            | L     | Unit | Ship Weight                             |      | t           | 3.0   | 3.5     | 4       | 4.5     | 5.5         | 6.2     | 7         | 7.8  | 9        | 10.5    | 13           | 14.5     | 16          | 18            | 20                   | 22       | 24       | 26    | 28       |
| D                  | 1     | Unit | Operating Weig                          | ht   | t           | 4.0   | 4.6     | 5.2     | 5.8     | 7           | 7.7     | 8.3       | 9    | 10       | 11.5    | 12.8         | 14       | 15          | 17            | 18                   | 20       | 22       | 24    | 26       |
|                    |       |      |                                         | V    | iuna        | Do    | uble    | e Eff   | ect :   | Stear       | n Fir   |           |      | ptio     | n Cl    | ille         | rs D     | ime         |               | n [SI                | ]        |          |       |          |
|                    |       |      | <u>C</u>                                |      |             | L     | 722     |         | B       | -           | -       |           | W    |          |         | <u>.</u> . ا |          |             | L             |                      |          | 1        |       |          |
|                    |       |      | E                                       |      | -1          | •     |         |         | 1       |             |         |           |      |          | 1       | Gi           | · o      |             |               | Go                   |          |          |       |          |
|                    |       |      |                                         | - 88 | Ġ           |       | •       |         | A       |             |         |           |      |          |         |              |          |             |               |                      |          |          |       |          |
|                    |       |      | THE T                                   | 0    | •           |       | -[      |         |         |             |         |           |      |          |         | 6            |          | H           | -             | 8                    |          | 田        |       |          |
|                    |       |      |                                         |      | н           | -     | T v     |         |         |             |         | 完         |      |          |         |              | - Otto   | П           | å             | R                    |          |          |       |          |
|                    |       |      | 1                                       | 0    |             | U     |         | -0111   |         |             |         | LF 4      |      | TI LI    |         |              | <u>H</u> | -           |               |                      |          |          |       |          |
|                    |       |      | -                                       |      |             |       | lema    | rks     |         |             |         |           |      |          | A       | _            |          | S           |               |                      |          | E        |       |          |
|                    |       |      |                                         |      |             | Cooli | ng Wa   | ter Inl |         | nection     | n       |           |      |          | _E      | 3            | P C      |             |               |                      |          | Ī        |       |          |
|                    |       |      |                                         |      | -           |       | Bypass  |         |         | i<br>Connec | tion    |           | -    |          | R       |              |          | н           |               |                      |          | S        |       |          |
|                    |       |      |                                         |      |             |       |         |         |         | et Con      |         | s         |      |          | 350     |              |          |             |               | 0 FC                 |          |          |       |          |
|                    |       |      |                                         |      |             |       | nerator |         |         |             |         |           |      |          |         | E            |          |             |               | 13.5                 |          | )        |       |          |
|                    |       |      | Go: U=F                                 |      | n Stag      | ge Ge | nerato  | r Outl  | ei Cor  | mection     | 1       |           |      |          |         | Gi_          | <u></u>  | 0.5         |               |                      | Go       | )_       |       |          |
| L                  |       |      | 111111111111111111111111111111111111111 |      |             |       |         |         |         |             |         |           |      |          | -       |              |          | 0           | <u> </u>      |                      |          |          |       |          |

Absorption Chillers

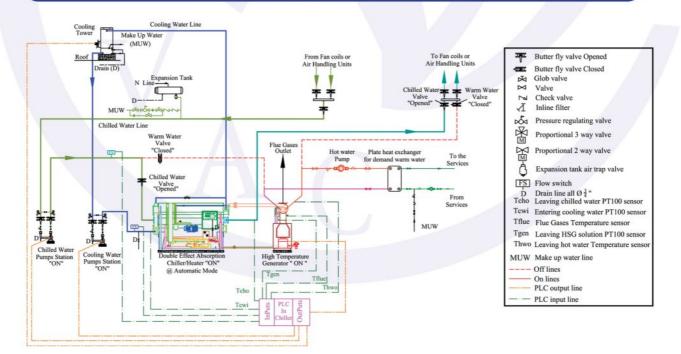
VIUNA HVAC IND.

Viuna Villa Model Warm Water Fired Absorption Chillers Performance Data [EN]
(Special Model for Operating with Solar System)

|    |                          | COP=0.750               | Ť   |                            |                                                    | Perfo                                 | rmanc                                           |                            | 1                | General Conditions                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|----|--------------------------|-------------------------|-----|----------------------------|----------------------------------------------------|---------------------------------------|-------------------------------------------------|----------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | Mo                       | del No.: V              | SE  | V                          | 2                                                  | 4                                     | 6                                               | 8                          | 10               | Rated Chilled Water Outlet/Inlet Temperature:     44 / 54 [°F]                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| lĩ | Cool                     | ling Capacity [USR      | to  | ns]                        | 5                                                  | 10                                    | 15                                              | 20                         | 25               | 2. Rated Cooling Water Inlet/Outlet Temperature:                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| lĩ | <b>D</b> .               | Flow Rate               |     | GPM                        | 12                                                 | 24                                    | 36                                              | 48                         | 60               | 85/95 [°F] 3. Rated Hot Water Inlet/Outlet Temperature:                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|    | Chilled<br>Water<br>data | Pressure Drop           |     | psi                        | 8                                                  | 10                                    | 10                                              | 12                         | 12               | 185/175 [°F] 4. Fouling Factor For Chilled, Cooling and Warm                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|    | 5 ≥ 3                    | Inlet/Outlet Connection | Е   | Inch                       | 1 ½                                                | 1 ½                                   | 2                                               | 2                          | 2 ½              | Water: 0.25 [ <sup>0</sup> F.ft <sup>2</sup> /MBH].  5. Electrical Specification:50[HZ]x1[PH] x 220 [Volt]                                                                                                                                                                                                                                                                      |  |  |  |  |
| lĪ | ng<br>r                  | Flow Rate               |     | GPM                        | 28                                                 | 56                                    | 84                                              | 112                        | 140              | Cycle Components Heat Capacity (H.C.)                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| II | Cooling<br>Water<br>Data | Pressure Drop           |     | psi                        | 10                                                 | 12                                    | 10                                              | 10                         | 12               | based on chiller capacity(USRtons)                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| ĮĮ | 3 >                      | Inlet/Outlet Connection | Α   | Inch                       | 2                                                  | 2                                     | 2 ½                                             | 2 ½                        | 3                | 1-Chilledwater H.C: Q <sub>chw</sub> =USRtons×12[MBH]                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    | er a                     | Flow Rate               |     | GPM                        | 16.5                                               | 33                                    | 49.5                                            | 66                         | 82.5             | 2-Cooling water H.C.: $Q_{clw} = Q_{chw} \times (1 + COP^{-1})$                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 11 | Warm<br>Water<br>Data    | Pressure Drop           |     | psi                        | 6                                                  | 7                                     | 7                                               | 8                          | 9                | 3-Generator H.C.: Q <sub>gen</sub> =Q <sub>HotWater</sub> = Q <sub>chw</sub> ×CO                                                                                                                                                                                                                                                                                                |  |  |  |  |
| ĮĻ | 72 (1)                   | Inlet/Outlet Connection | G   | Inch                       | 1 ½                                                | 1 ½                                   | 2                                               | 2                          | 2 ½              | Conversion Factor                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| ļĻ | Electric                 | cal Consumption         |     | kW                         | 0.35                                               | 0.45                                  | 0.55                                            | 0.65                       | 0.75             | 1 m <sup>3</sup> /hr = 4.4 GPM<br>1 MBH = 252 kcal/hr<br>1 USRtons = 3.517 kW                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| II | E .                      | Length                  | L   | m                          | 1.1                                                | 1.2                                   | 1.4                                             | 1.6                        | 1.8              | 1 psi = 6895 Pa 1 lb = 0.454 kg                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    | Dimension<br>Data        | Height                  | Н   | m                          | 1.7                                                | 1.7                                   | 1.8                                             | 1.8                        | 1.9              | Viuna Villa Model Absorption                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|    | Ĭ o                      | Width                   | W   | m                          | 1.0                                                | 1.0                                   | 1.2                                             | 1.4                        | 1.4              | Chillers Actual Cycle [SI]                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| ĮĮ | 1                        | Unit Operating Weight   |     | kg                         | 550                                                | 750                                   | 900                                             | 1000                       | 1200             |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    | Vi                       | una Villa Model Al      | bse | orptio                     | on Chi                                             | llers D                               | imen                                            | sion [S                    | SI]              |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    | S S                      |                         | Go  | C: Con<br>E: Fan<br>Gi: Ge | sorber Co<br>ndenser C<br>n coils Chi<br>nerator W | ooling Wate<br>illed Wate<br>arm Wate | ks ter Inlet Cater Outlet or Inlet Coter Outlet | et Connectutlet Connection | tion<br>nections | 12.4 lit/min per tons Warm Water Flow Rate  79.4 [*C]  Warm Water  85 [*C]  Cooling  Water  Cooling  Water  Cooling  Water  Cooling  Water  Cooling  Water  Cooling  Water  12.2 [*C]  Absorber  Cooling  Water  Cooling  Water  Cooling  Water  Cooling  Water  12.2 [*C]  Absorber  Solution Pump With  Stainless Steel Filter  Refrigerant Pump With  Stainless Steel Filter |  |  |  |  |




Viuna Vila model have the same function as the Viuna outdoor packages but with low capacities between 5 to 25 USRtons. The features are as follows.


- [1] Easy installation, when the chiller is delivered to jobsite, only the chilled water pipe, cooling water pipe, and warm water pipe are connected to the chiller.
- [2] No location requirement, chiller can be located on the rooftop or margin of the building.
- [3] Portable chiller, it can be carried on a vehicle and used for temporary exhibitions or other areas.
- [4] Special model, it can be operated with solar system.

### Typical Piping System

#### Viuna Single Effect Hot or Warm Water Fired Absorption Typical Piping System (Summer Condition)



#### Viuna Double Effect Direct Fired Absorption Typical Piping System (Summer Condition)



# • Technical Notes to Engineers

| Location                      | It is possible to locate the chiller in the basement on the same level, on the floor for its safety and proper operation with the feature of little vibration and low noise. It is recommended that the chiller machine room should be separated from boilers and pumps room as possible. Well ventilation of machine room is strongly recommended. The chillers foundation must be on a higher level with load capacity as 1.5 times the operation weight in the machine room.                                                                          |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quantities                    | To decide the quantity, you should take cooling capacity, cooling capacity fluctuating, building function, installation site and economic factors in to consideration. You need not consider the stand by unit because continuous operation is better for the life time than intermittent operation, but in high cooling capacity chillers with stand by canned pumps may be suggested.                                                                                                                                                                  |
| Special dimensions            | If your machine room or entrance is smaller than the mentioned dimensions, please contact Viuna to discuss for a solution and finally chiller dimensions are adjustable.                                                                                                                                                                                                                                                                                                                                                                                 |
| Split shipment                | If it's limited by transportation or machine room entrance height, split shipment shall be selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Low chilled water temperature | Provide chilled water at 32[°F] for special processing requirements. For example food and fruit plant, medical plant, power station cooling system, etc                                                                                                                                                                                                                                                                                                                                                                                                  |
| Seawater                      | Use seawater as cooling water, applications to coastal buildings, ship's air conditioning and seawater desalination plant.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Piping system                 | <ol> <li>Soft connector must be installed at inlet / outlet of chilled, cooling, and hot water. The weight of the piping system can never be borne by the chiller.</li> <li>Cooling tower must be equipped with a protective screen to prevent foreign matters from entering the cooling water system.</li> <li>The cooling tower must be far away from heat resource and dust resource.</li> <li>No pipes or valves must hang over the chiller to prevent the chiller from being damaged during installation, maintenance, or valve leakage.</li> </ol> |

# • Technology Extension

| Outdoor package | Viuna outdoor packages are warm and hot water types small and medium models additionally equipped with hot water boiler, cooling tower, cooling water pumps, chilled water pumps, and hot water pumps. |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCHP system     | The perfect combination between Viuna absorption chillers and turbo generator or Diesel generator made in the U.S.A., Europe or any other countries can increase the energy efficiency greatly.        |





Gas Turbine CCHP Plant

**CO2 Production Plant** 

Advanced Absorption Chiller Accompanying with CO2 Production Plant Converts

Gas Turbine or Gas Diesel Engines Exhaust to Air Conditioning or to Refrigeration Plant and finally to CO2



Typical Installation Room With Viuna Absorption Chillers

Address: No. 52, Shahid Zamiraei (18)Ave. Etehad St., Damavand(Abali) IRAN-TEHRAN

Tel: (+98) 21 77349741 - (+98) 21 77340621 Fax: (+98) 21 77356359 Mob:(+98) 9122274092

E-mail: mhj\_abyaneh@viunahvac.com Website: www.viunahvac.com